
Kubernetes Horizontal Pod Autoscaler
Implementation

Project Overview

I developed a Kubernetes deployment with automatic scaling capabilities using
Horizontal Pod Autoscaler (HPA) to demonstrate container orchestration and resource
management skills.

Deployment Configuration :

• Container : nginx image with memory requests/limits
• Availability : Minimum 2 pod replicas for high availability

HPA Configuration :

• Replicas : 2-5 pods (min-max scaling range)
• Scaling Metric : Memory utilization at 75% threshold
• Behavior : Automatically scales up/down based on memory usage

Project Deliverables :

1. YAML Manifests : Deployment, HPA, and Service configurations
2. Documentation : HPA functionality, memory-based scaling mechanics, and

resource management best practices
3. Implementation Evidence : kubectl outputs and live monitoring screenshots

Key Learning Outcomes :

• Kubernetes resource management and optimization
• Automated scaling strategies for production workloads
• Cost-effective cloud resource allocation
• Performance monitoring and troubleshooting

Technologies Used : Kubernetes, Docker, nginx, HPA, YAML

1. Create YAML manifests for Deployment and Horizontal Pod Autoscalers :

deployment1.yml

- Replicas : The number of pods running at the start.
- Resources.requests.memory : “64Mi”
The minimum memory requested.
- Resources.limits.memory : “128Mi”
The maximum memory requested/allowed.

hpa.yml

How it works is simple :

- If the average memory usage is >75%, the HPA will add pods (scale up).

- If the average usage is <75%, the HPA will reduce pods (scale down).

- But it remains within the minimum limit of 2 pods, maximum 5 pods.

What is a Horizontal Pod Autoscaler (HPA) ?

Horizontal Pod Autoscaler (HPA) is a Kubernetes component that automatically
increases or decreases the number of pods in a Deployment/ReplicaSet based on
specific metrics, such as CPU or memory usage.

How Horizontal Pod Autoscalers (HPA) work :

- The HPA reads memory usage metrics from pods.

If the average memory usage of a pod is >75% of requests.memory, then :

- HPA will add pods (scale out)

- If memory usage is <75%, then :

- HPA will reduce pods (scale in), to a minimum (2 pods)

What happens if memory usage exceeds or falls short of the target :

- Memory usage >75% : Increase the number of pods (no greater than maxReplicas)

- Memory usage <75% : Reduce the number of pods (no less than minReplicas)

Real-life example :

I have a news website that receives a lot of visitors in the morning :

- When traffic increases, memory usage increases, HPA will automatically scale out

- When traffic decreases, memory usage decreases, HPA will scale in, the benefit of
which is resource and cost savings in a cloud environment.

Installing metrics-server

Modify metrics-server to work locally :

For Horizontal Pod Autoscaler (HPA) to function properly, Kubernetes requires a
metrics-server capable of reading resource usage (such as CPU and memory) from
pods. However, in on-premises environments like a Macbook running Docker Desktop,
there's a problem because the kubelet uses a self-signed TLS certificate, which is invalid
according to the metrics-server. To address this issue, modify the metrics-server
deployment by adding the following argument to the args section :

- Add - --kubelet-insecure-tls in this line:

(save file and exit)

This argument instructs metrics-server to Ignore TLS certificate verification when
trying to access the kubelet API, so it can still read metrics from the node even if the
certificate is not trusted.

- Running YAML configuration with kubectl apply -f <filename>

- Monitoring CPU metrics across multiple pods kubectl top pod

- Monitoring active Autoscalers HPA metrics running in real time with -w

THANK YOU

